Struktur Data Tree: Pengertian, Jenis, dan Kegunaannya
Struktur data adalah cara atau teknik untuk mengatur elemen data ke dalam bentuk tertentu. Urutan dalam menyusun elemen data akan sangat menentukan apakah elemen data yang hendak diakses dapat diproses dalam waktu yang lebih singkat dan mudah atau tidak.
Elemen data yang disusun secara berurutan dimana setiap elemen saling berdekatan antara satu elemen dengan elemen lain disebut sebagai struktur data linier. Contohnya seperti array, linked list, stack, dan queue.
Selain struktur data linier, ada juga struktur data nonlinier, yaitu struktur data yang tidak kontigu atau tidak bertetangga. Salah satunya adalah tree.
Apa itu tree?
Nah, pada artikel ini kita akan belajar mengenal lebih dalam tentang struktur data tree, jenis, serta kegunaannya
Daftar Isi
Pengertian Struktur Data Tree
Tree adalah tipe struktur data yang sifatnya non-linier dan berbentuk hierarki.
Struktur Data Tree: Pengertian, Jenis, dan Kegunaannya
Mengapa tree disebut sebagai struktur data non-linier? Alasannya karena data pada tree tidak disimpan secara berurutan. Sebaliknya, data diatur pada beberapa level yang disebut struktur hierarkis. Karena itu, tree dianggap sebagai struktur data non-linear.
Hierarki pada struktur tree dapat diibaratkan seperti sebuah pohon keluarga di mana terdapat hubungan antara orang tua dan anak. Titik yang lebih atas disebut simpul induk sedangkan simpul di bawahnya adalah simpul anak.
Struktur data tree terdiri atas kumpulan simpul atau node dimana tiap-tiap simpul dari tree digunakan untuk menyimpan nilai dan sebuah list rujukan ke simpul lain yang disebut simpul anak atau child node.
Tiap-tiap simpul dari tree akan dihubungkan oleh sebuah garis hubung yang dalam istilah teknis disebut edge. Biasanya diimplementasikan menggunakan pointer.
Simpul pada tree bisa memiliki beberapa simpul anak (child node). Namun, jalan menuju sebuah child node hanya bisa dicapai melalui maksimal 1 node. Apabila sebuah node atau simpul tidak memiliki child node sama sekali maka dinamakan leaf node.
Struktur data ini adalah metode khusus untuk mengatur dan menyimpan data di komputer agar dapat digunakan secara lebih efektif.
Jenis tree yang paling umum digunakan adalah Binary Tree, dimana sebuah tree memiliki maksimal 2 child node.
Istilah-istilah pada Tree
Layaknya sebuah pohon yang memiliki akar, cabang, dan daun yang terhubung satu sama lain, pada struktur data tree terdapat beberapa istilah penting yang mirip seperti istilah di dunia nyata, antara lain:
1. Node
Node atau simpul adalah entitas pada struktur data tree yang mengandung sebuah nilai dan pointer yang menunjuk simpul di bawahnya (child node).
2. Child node
Child node atau simpul anak adalah simpul turunan dari simpul di atasnya.
3. Leaf Node
Leaf node atau simpul daun adalah simpul yang tidak memiliki child node dan merupakan node yang paling bawah dalam struktur data tree. Simpul ini biasa disebut juga sebagai external node
3. Root
Root atau akar adalah simpul teratas dari sebuah tree.
4. Internal node
Internal node adalah istilah untuk menyebut simpul yang memiliki minimal satu child node.
5. Edge
Edge merujuk pada garis yang menghubungkan antara dua buah simpul dalam tree. Jika sebuah tree memiliki N node maka tree tersebut akan memiliki (N-1) edge. Hanya ada satu jalur dari setiap simpul ke simpul lainnya.
6. Height of node
Height of node adalah jumlah edge dari sebuah node ke leaf node yang paling dalam.
7. Depth of node
Depth of node adalah banyaknya edge dari root ke sebuah node.
8. Height of tree
Height of tree dapat diartikan sebagai panjang jalur terpanjang dari simpul akar ke simpul daun dari seuah tree.
9. Degree of node
Jumlah cabang yang melekat pada simpul disebut Degree of node atau derajat simpul. Derajat simpul pada sebuah leaf node adalah 0.
Selain Degree of node, terdapat juga Degree of tree yaitu derajat maksimum simpul di antara semua simpul pada tree.
10. Subtree
Subtree adalah setiap simpul dari tree beserta turunannya.
Istilah Istilah pada Struktur Data Tree
Karakteristik Tree
Adapun karakteristik dari struktur data tree adalah sebagai berikut:
Penjelahan data (traversing) pada tree dilakukan oleh algoritma Depth First Search dan Breadth First Search
Tidak ada loop dan circuit
Tidak memiliki self-loop
Disusun dalam model hierarki
Jenis-jenis Tree
Struktur data tree dapat diklasifikasikan ke dalam 4 jenis, yaitu: General tree, Binary tree, Balanced tree, dan Binary search tree.
1. General tree
Struktur data tree yang tidak memiliki batasan jumlah node pada hierarki tree disebut General tree. Setiap simpul atau node bebas memiliki berapapun child node. Tree jenis adalah superset dari semua jenis tree.
2. Binary tree
Binary tree adalah jenis tree yang simpulnya hanya dapat memiliki paling banyak 2 simpul anak (child node). Kedua simpul tersebut biasa disebut simpul kiri (left node) dan simpul kanan (right node). Tree tipe ini lebih populer daripada jenis lainnya.
3. Balanced tree
Apabila tinggi dari subtree sebelah kiri dan subtree sebelah kanan sama atau kalaupun berbeda hanya berbeda 1, maka disebut sebagai balanced tree.
Contoh Struktur Data Tree: Balanced Tree
4. Binary search tree
Sesuai dengan namanya, Binary search tree digunakan untuk berbagai algoritma pencarian dan pengurutan. Contohnya seperti AVL tree dan Red-black tree. Struktur data tree jenis ini memiliki nilai pada simpul sebelah kiri lebih kecil daripada induknya. Sedangkan nilai simpul sebelah kanan lebih besar dari induknya.
Contoh Struktur Data Tree: Binary Search Tree
Fungsi dan Kegunaan Tree
Berikut adalah fungsi dan kegunaan dari struktur data tree
Dalam kehidupan nyata, struktur data tree membantu dalam pengembangan game.
Membantu pengindeksan pada database.
Decision Tree adalah tools yang biasanya digunakan dalam analisis keputusan. Metode ini memiliki struktur seperti diagram alur yang membantu untuk memahami data.
Domain Name Server juga menggunakan struktur data tree.
Kasus penggunaan tree yang paling umum adalah situs jejaring sosial, seperti Facebook, Instagram, Twitter, dll.
Keunggulan Strukur Data Tree
Berikut adalah beberapa keunggulan atau kelebihan dari tree:
Memungkinan subtree untuk dipindahkan dengan usaha yang minim.
Mencerminkan hubungan data secara struktural.
Menawarkan operasi pencarian dan penyisipan yang efisien.
Tree sangat baik digunakan untuk membuat hierarki data.
Komentar
Posting Komentar